An Improved Synthesis of [15N] Labelled Acetamide and Acetonitrile D. R. Morgan and H. C. Dorn University Polytechnic Institute and State University Blacksburg, VA 24061 #### Summary An improved synthesis of [15N] labelled acetamide and acetonitrile is described which provides these compounds in yields of 85% and 64%, respectively. The key difference in the present preparation is the use of 2,2,2-trifluoroethyl acetate for the reaction with ¹⁵NH₄OH. Key Words: 15N, acetonitrile, acetamide #### Introduction The preparation of ¹⁵N labelled acetonitrile has usually been achieved by one of the three procedures outlined below: $$CH_3I + KCN*/NaCN* \rightarrow CH_3CN*$$ (1) $$(CH3)2SO4 + KCN* \rightarrow CH3CN*$$ (2) $$(CH_3CO)_2O + *NH_3 \rightarrow CH_3CON^*H_2$$ (3) $$CH_3CONH_2 \xrightarrow{P_2O_5} CH_3CN^*$$ (4) ## Scheme 1 The first reaction in Scheme 1 provides CH₃C¹⁵N in a high yield (88-95%), but suffers from the use of relatively expensive KC¹⁵N and/or NaC¹⁵N.^{1,2} The second procedure (dimethyl sulfate)³ also employs KC¹⁵N but does not appear to provide any inherent advantage (lower yield ~67%) over the classic approach represented by reaction 1. The third approach has the advantage of starting with relatively inexpensive ¹⁵NH₃ (or ¹⁵NH₄Cl), but is a two-step reaction (3 and 4) which has a poor overall yield (34-47%).^{4,5} Nevertheless, the simplicity of the second step dehydration (P₂O₅) makes this approach attractive, if the overall yield could be improved. Our synthetic strategy was based on the classic ammonolysis reaction of ethyl acetate.⁶ Unfortunately, good yields in this reaction are usually obtained with a large excess of ammonia. An alternative approach is to employ an ester with a better leaving group (e.g. 2,2,2-trifluoroethyl acetate). In addition, the alcohol 2,2,2-trifluoroethanol liberated during the ammonolysis reaction has a relatively low boiling point and can be readily removed by simple distillation. Subsequent dehydration of CH₃ CO¹⁵N₂ by heating in the presence of (P₂O₅) provides CH₃C¹⁵N. CH₃COOCH₂CF₃ + 15 NH₄OH $\stackrel{\triangle}{\rightarrow}$ CH₃CO¹⁵NH₂ + CF₃CH₂OH + H₂O (5) CH₃CO¹⁵NH₂ $\stackrel{P_2O_5}{\longrightarrow}$ CH₃C¹⁵N (6) Based on several experiments, the yield for the first step was ~85% and the subsequent dehydration step provides a yield of 75% (i.e., overall yield of 64%). Thus, the present procedure appears to be competitive with previous procedures. #### Experimental The ¹H NMR data were obtained using a Bruker WP/200 instruments. The 2,2,2-trifluoroethyl acetate sample was prepared from acetic anhydride (Aldrich Chemical Co.) and 2,2,2-trifluoroethanol (Aldrich Chemical Co.) in the presence of pyridine. The labelled (99%) ¹⁵NH₃ was obtained from Isotec, Inc. The concentrated (28%) ¹⁵NH₄OH solution was prepared by bubbling ¹⁵NH₃ gas into deionized water at ~5°C. ### Synthesis of ¹⁵N Labelled Acetamide A concentrated solution of ¹⁵NH₄OH (28% ¹⁵NH₃, 6.5 ml ~ 97 mmol) was quickly added to 15.5 g (109 mmol) of 2,2,2-trifluoroethyl acetate which was precooled in an ice bath. The mixture initially formed two distinct transparent layers and was allowed to warm to room temperature. The mixture was subsequently stirred overnight at room temperature. The clear homogeneous mixture was distilled with an organic fraction distilling at 70-90°C and an aqueous phase distilling at 90-109°C. The remaining liquid in the distillation pot was placed in a desiccator and crystalline ¹⁵N acetamide slowly formed upon cooling. The yield was 5 g (85% yield) with a m.p. 81.5-82°C, lit. 82.3°C. The ¹⁵N CH₃CO¹⁵NH₂ was pure as indicated by ¹H NMR analysis, ¹H NMR, (CDCl₃) δ 2.01(s) 3H; 5.75(d)2H, (¹J_{NH} = 88 Hz). ## Synthesis of ¹⁵N Labelled Acetonitrile In a 25 ml round bottom flask equipped with a short path distillation column was placed 8 g (0.056 moles) of P₂O₅ and 5 g (0.083 moles) of CH₃CO¹⁵NH₂. The mixture was slowly heated and the fraction distilling at ~81°C was collected. The yield of CH₃C¹⁵N was 2.6 g (75% yield). The ¹H NMR (CCl₄) δ 1.97, (d) 3H, (³J_{NH}=1.8 Hz). # Acknowledgements The authors acknowledge financial support from the Jeffress Research Foundation and experimental help from Juan Gu. #### References - Whaley, T. W., Daub, G. H., Kerr, V. N., Lyle, T. A. and Olson, E. S. J. Labelled Compds. 16: 809 (1979). - 2. Klinge, D. E. and van der Plas, H. C. Rec. Trav. Chim. 95: 34 (1976). - 3. Bertagnolli, H., Chieux, P. and Zeidler, M. D. Mol. Phys. 32: 1731 (1976). - 4. Juchnovski, I. N., Dimitrova, J. S., Binev, I. G. and Kaneti, J. Tetrahedron 34: 779 (1978). - Anthoni, U., Nielsen, P. H. J. Labelled Compounds and Radiopharmaceuticals. 21: 375 (1983). - 6. Gilman, H. Organic synthesis, I: 3(1932), John Wiley & Sons.